Ecological Impact/Transport and Transformation of Perchlorate

Dr. Ron Porter, USAF

STATES OF AN

Dr. Mark Sprenger, USEPA

Dr. Clarence Callahan, USEPA

Introduction

- Background
- Fate and Transport of perchlorate
- Historical Studies
 - Potential ecological receptors
 - Observed Effects
- Proposed Activities and EPA Framework
- Discussion

Background

- Perchlorate salts have low volatility, but high solubility
- Solubility leads to high mobility in aqueous systems
 - Surface water
 - Groundwater
- Mobility and persistence may pose a threat to ecological receptors

Exposure Model

Fate and Transport

(Transport and Transformation)

- What happens to perchlorate in the environment?
 - Physical characteristics
 - Attenuation processes
- What are the data gaps?

Physical Characteristics

- Vapor Pressure--no values found in literature
 - Volatilization not expected to be predominant pathway
- Density--1.95 g/mL
 - Will sink in water
 - Concentrated solutions also more dense than water

Physical Characteristics

- Solubility--20.2 g/100g solution
 - Dissolution expected and perchlorate ion will predominate in solution
 - Potential for potassium salt to precipitate-function of ion concentrations
- Standard potential--reduction for Cl from
 +7 oxidation state to -1
 - All values positive which indicates the reaction is thermodynamically favored

Physical Characteristics

Standard potential

$$ClO_4^- + 4H_2 \longrightarrow 4H_2O + Cl^-$$

- Little evidence that reaction occurs spontaneously
- Reduction rate negligible at room temperature
- Conclusion: Perchlorate is kinetically stable (most stable oxo-compound of chlorine)

Mobility of Perchlorate

Attenuation Processes

- Dilution
- Precipitation
- Biological or chemical reduction
- Adsorption
- Ion-exchange

Attenuation Processes

- Dilution--concentrations expected to be significantly lower away from the source
 - However, function of the inert binder may influence source area concentrations
- Precipitation
 - Potassium less soluble, could lead to subsurface precipitation; long-term source area, near source area, and far source area re-dissolution

Mobility of Perchlorate

Attenuation Processes

- Biological or chemical reduction
 - Perchlorate reduction can occur at metal surfaces under acidic pH; however, inhibition by competing anions a problem
- Sorption
 - Perchlorate absorbs weakly to most soil minerals (NO₃⁻ and Cl⁻ more favorable)
 - Minimal impact inhibiting mobility

Summary

- Perchlorate is very soluble
- Very stable at low concentrations
- Very inert ion
- Some potential for precipation in subsurface
- Reduction and sorption occurs to a lesser extent

Data Gaps General

- Binder Effects
 - Binder chemical degradation rates?
 - Leachability from binder?
 - Concentration of binder + other contaminants?
- Role of reduction and interaction of ClO₄ with subsurface soils

Data Gaps Site-Specific

- Soil properties
- Hydrology
- Infiltrating groundwater
- Characterization of leachates produced from source and near source soils

Contact

Cornell Long

Det 1, HSC/OEMH

2402 E Drive

Brooks AFB, TX 78235-5114

210-536-6121 Fax 1130

cornell.long@guardian.brooks.af.mil